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Abstract

The goal of computational color constancy is to recover the
physical properties of illuminants and surfaces from
photosensor responses. We formulate computational color
constancy as a statistical estimation problem. We assume
that the likelihood that any particular illuminant or surface
will occur in a scene is governed by a prior probability
distribution. In particular, we assume that illuminant spec-
tral power distributions are drawn according to multivari-
ate. Normal distribution over the weights of a finite
dimensional linear model, and similarly for surface reflec-
tance functions. Given a set of photosensor responses,
Hayes rule may be applied to derive the posterior distribu-
tion for illuminants and surfaces. We discuss how to use the
posterior to estimate the illuminant. We use simulation to
compare the performance a Bayesian algorithm to that of
two previously reported color constancy algonthms. For
our simulation conditions, the Bayesian algorithm results in
the smallest expected estimation error.

Introduction

The surface reflectance function of an object specifies, as a
function of wavelength, what fraction of incident light is
reflected from the object. The surface reflectance function
provides a spectral signature which may help identify the
object. The light reflected from an object to an imaging
device, however, confounds the object’s surface reflec-
tance function with the spectral power distribution of the
illuminant: changes in the spectrum of the reflected light
may be due to changes in surface reflectance or to changes
in illumination. To estimate object surface reflectance, a
visual system must factor the image into illuminant and
surface components.

A visual system that can perform such a factorization,
so that the color descriptors assigned to surfaces are inde-
pendent of the illumination, is referred to as color constant.
Over a wide range of viewing conditions, the human visual
system exhibits at least partial color constancy.1-3 A com-
plete theory of human color vision must explain how color
constancy, or even partial color constancy, is possible. The
goal of computational color constancy is to provide this
explanation.

Why Color Constancy is Difficult
To understand why color constancy requires a compu-

tational explanation, we must examine how images are
formed. Consider the special case of a collection of N1 matte
surfaces, diffusely illuminated by a single illuminant. For
this viewing geometry, we may characterize each surface
by its reflectance function. We specify the reflectance
function of the jth surface with the column vector sj. The
entries of sj specify the fraction of incident light reflected in
Nλ evenly spaced wavelength bands throughout the visible
spectrum. Similarly, we specify the illuminant spectral
power distribution with the column vector e. The entries of
e specify the radiant power in each of the wavelength bands.
The spectral power distribution of the light reaching the
imaging device is given by the vector cj = e.* sj, where we
use the notation .* to denote entry-by-entry multiplication.

A visual system does not typically have direct access to
the N1 spectra cj. Rather, the imaging device samples each
cj with Nr classes of linear photosensor. Each photosensor is
characterized by a spectral sensitivity function, which speci-
fies how strongly it responds to light as a function of
wavelength. We specify the spectral sensitivities with an Nr

by Nλ dimensional matrix R. The klth element of R specifies
the sensitivity of the kth sensor class to light in the lth
wavelength band. We let the Nr dimensional column vector
rj represent the responses from all Nr sensor classes to the
spectrum cj. In the absence of sensor noise, we have the
rendering equation for a single surface:

rj = R cj = R (e.*sj). (1)

This equation specifies the relation between the data
available to the visual system at an image location (rj) and
the scene parameters it must estimate (e and sj). In this paper
we consider methods for estimating the scene parameters
from the data. This type of estimation is often referred to as
an inverse problem.

The inverse problem specified by Eq. 1 is difficult for
two reasons: it is underdetermined and it is non-linear. An
inverse problem is underdetermined if there are more scene
parameters than there are degrees of freedom in the data.
The spectral functions for surfaces and illuminants are
typically represented using wavelength bands with widths
between 1 nm and 10 nm throughout the visible spectrum
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(roughly 380 nm to 780 nm). Even if we use sparse 10 nm
wavelength sampling in the limited wavelength range 400
nm to 700 nm, e and the sj are of dimension 31. On the other
hand, a typical imaging device (e.g. an RGB camera or the
human eye), contains only a few classes of photosensor.
Indeed, the rj are often of dimension 3. If we have data from
Nl image locations and assume one illuminant, then we have
(NlNr) measurements available to estimate (Nλ(Nl + 1))
scene parameters.

An inverse problem is non-linear if the scene param-
eters and the data are non-linearly related. In Eq. 1 some
scene parameters (i.e. the entries of e) are multiplied by
others (i.e. the entries of the sj). Although standard methods
exist for solving underdetermined linear inverse problems,4

no general solution is available for the non-linear case.

Previous Work
Because the inverse problem posed by color constancy

is highly underdetermined, previous work investigated ways
to reduce the number of parameters required to describe
illuminants and surfaces. This will be possible if it can be
established a priori that not all possible illuminant and
surface functions will be encountered in the environment
where the visual system will operate.

A commonly used approach has been to describe spec-
tral functions using finite-dimensional linear models. Let
Be be an Nλ by Ne dimensional matrix. We say that the
illuminant spectra are constrained to lie within the linear
model Be if we can write e = Bewe, where we is an Ne

dimensional column vector. We call the columns of Be the
basis functions of the linear model, since the matrix product
Bewe expresses a weighted sum of these columns. The
dimension of the linear model is Ne. The Ne entries of we are
the linear model weights for the illuminant e. Similarly, we
say that the surface spectra are constrained to lie within the
linear model BS if we can write sj = BSwSj, where BS is an Nλ
by NS dimensional matrix and wSj is an NS dimensional
column vector.

If we assume that a spectral function is constrained to
lie within an N dimensional linear model, then we can
parameterize the function by specifying the model weights.
(The basis functions are assumed to be fixed and known.)
When N is small, linear models provide very compact
descriptions of spectra. Many naturally occurring spectra
are well-described by small-dimensional linear models.
The number of dimensions required to describe a large
sample of measured daylights is approximately four.5 The
number required for large samples of measured surfaces lies
somewhere between six and eight.6,7 Moreover, linear mod-
els with dimension as low as three capture a large percent-
age of the variance of the measured spectra.

Most modern color constancy algorithms incorporate
the assumption that surfaces and illuminants may be param-
eterized by the weights of small-dimensional linear models.
By incorporating linear model constraints, it has been
possible to show several sets of conditions under constancy
may be achieved. To illustrate the idea, we discuss two
classic color constancy algorithms in some detail.

Maloney and Wandell8 showed that when there are Nr

classes of photoreceptors, the rendering equation may be
inverted if the illuminants are constrained to lie within an Nr

dimensional linear model and that the surfaces are con-

strained to lie within Nr-1 dimensional linear model. We
refer to their algorithm as the subspace algorithm. When the
linear model constraints hold, the sensor responses rj lie
within an Nr-1 dimensional subspace of the Nr dimensional
sensor space. The particular subspace depends on the
illuminant, so that identifying the subspace that contains the
rj leads to an estimate of the illuminant.8,9

An elegant feature of Maloney and Wandell’s algo-
rithm is that the estimate of the illuminant does not depend
on the particular surfaces in the scene. For human vision,
however, there are only three classes of cone photosensors,
so that Maloney and Wandell’s analytical result applies
directly only if the surfaces lie within a two-dimensional
linear model. Since this is not the case for natural surfaces,
the practical value of the subspace algorithm depends on
how it behaves under violations of the assumptions on
which it is based. We used simulation to investigate this
question (see below) and conclude that the original sub-
space algorithm is not sufficiently robust to serve as a model
for human color constancy.

Buchsbaum10 developed an algorithm that is less strict
about the dimension of the linear model constraints it
requires. Both the illuminants and surfaces need only be
constrained to lie within Nr dimensional linear models.
Buchsbaum’s algorithm assumes that the spatial mean of
the surface reflectances sj is constant across scenes and
equal to some known reflectance function s0. This assump-
tion is often referred to as the gray world assumption, and
we therefore refer to Buchsbaum’s algorithm the gray world
algorithm. When the gray world assumption holds, the
spatial mean of the sensor responses rj can be shown to carry
sufficient information to allow estimation of the illuminant.

The gray world assumption is somewhat unsatisfac-
tory, as it implies that color constancy must break down for
images where mean reflectance function differs from s0.11

This breakdown does not seem to be characteristic of human
color vision, although there is only limited psychophysical
data available on this point. As a practical matter, we can ask
how much error in the illuminant estimate is introduced by
statistical variation in the mean of Nl surfaces drawn from
a population mean with reflectance function s0. We used
simulation to investigate this question and report the results
below.

The subspace and gray world algorithms both work by
extracting a summary statistic from the sensor responses
and then using this statistic to estimate the illuminant. For
the subspace algorithm, the statistic is the identity of the
subspace that contains the responses. For the gray world
algorithm, the statistic is the mean sensor responses. The
algorithms demonstrate that these statistics carry informa-
tion about the illuminant. On the other hand, there is no
reason to use only one statistic. If both statistics carry
information, then we might expect improved performance
from an algorithm that combines information from both.

To capitalize on this intuition, however, we must know
how to combine the information in an effective manner.

Bayesian Framework

In this paper, we apply Bayesian estimation methods to
computational color constancy. The Bayesian approach
gives us a prescription for how to use all of the information
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about the illuminant contained in the sensor responses rj,
including the information used by the subspace and gray
world algorithms. See Berger12 for a general discussion of
Bayesian methods. See Trussell and Vrhel13,14 and D’Zmura
and Iverson15 for related statistical approaches to color
constancy.

Figure 1. Histograms of surface linear model weights. Each panel
shows weights for one basis function. Solid lines show Normal
probability density with the same mean and variance as the
weights.

In the next section, we introduce the Bayesian ap-
proach to parameter estimation. We discuss how this ap-
proach may be applied to color constancy and review a
simple illustrative example. We then derive an analytic

result that allows us to use the Bayesian approach to
estimate the illuminant from the sensor responses. Finally,
we use simulation to compare the performance of the
Bayesian algorithm to that of the subspace and gray world
algorithms.

Bayesian Estimation
The Bayesian approach to estimation is very simple.

Prior information about the parameters is expressed as a
probability distribution. If we are trying to estimate param-
eters described by the vector x, then the prior information is
given by the probability density p(x). The relation between the
parameters x and the data y is also expressed as a probability
density p(y|x), often referred to as the likelihood function.
(We adopt the convention that the notation p( ) is used to
denote different probability density functions. The particu-
lar function in any context is indicated by the argument.)

Given the prior p(x) and the likelihood p(y|x), the
probability of any set of the parameter values, given the
data, is computed using Bayes rule

p(x|y) = C p(y|x) p(x). (2)

In this paper, we will use C to indicate any expression
constant over the variables of interest. Here, C is a normal-
izing constant that depends on the data y but not on the
parameters x. The distribution p(x|y) is referred to as the
posterior. The posterior gives the probability that the pa-
rameter x generated the data y.

To go from the posterior to a single estimate     ̂x  for the
parameters x we need to specify a loss function L(    ̃x ; x).
This function specifies the penalty for choosing     ̃x  when the
actual parameters are x. Given the posterior and a loss
function, we may compute the loss expected in choosing     ̃x ,
called the Bayes risk, which we write

        
      
R(x̃|y) = L(x̃, x)p(x|y)dx

x∫ . (3)

We choose     ̂x  to minimize the Bayes risk.
Bayesian estimation provides a principled way to choose

an optimal estimate. It may be applied to any problem where
the prior information can be cast in the form of a probability
distribution over the scene parameters and where a suitable
loss function can be specified.

Probabilistic Constraints
To apply the Bayesian framework to computational

color constancy, we must express our knowledge about
illuminants and surfaces as a probability distribution. Fig-
ure 1 illustrates how we do this. We have taken a large set
of measured surface reflectances and found the three di-
mensional linear model that provides the best approxima-
tion to the data. The figure shows histograms of the model
weights required to fit each reflectance. The weights for
each basis function cluster around a central value. We will
assume that the model weights are distributed according to
a Normal distribution with the same mean and variance as
the measured weights. In the figure, we have shown as solid
lines the Normal distributions corresponding to each basis
function. It is quite possible that some other form could
better model the weight distributions.
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Bilinear Problems
Although the color constancy rendering equation (Eq.

1) is non-linear, it does exhibit considerable structure. In
particular, the relation between the photosensor responses
rj, the illuminant parameters e, and the surface parameters
sj is bilinear. This means that the relation between rj and sj

is linear when e is held fixed and that the relation between
rj and e is linear when sj is held fixed. To emphasize this, we
note that we can write

   rj = L(e)sj = L(sj)e (4)

where L(e) = R diag(e) is an Nr by Nλ dimensional matrix
that depends only on e and L(sj) = R diag(sj) is an Nr by Nλ.
dimensional matrix that depends only on sj.

When we reparameterize in terms of linear model
weights, we do not perturb the bilineanty of the rendering
equation. By letting M(we) = L(Bewsj)BS and M(wsj) =
L(BSwsj)Be we have

           rj = M(we) wsj = M(wsj)we. (5)

It is convenient to extend Eq. 5 to express the relation
between the data and scene parameters at all locations
simultaneously. Let r be the (NlNr) dimensional column
vector obtained by stacking the vectors rj. Let wS be the
(NlNs) dimensional column vector obtained by stacking the
vectors wsj. Then we can write the overall rendering equa-
tion as

r = N(we) wS = N(wS)we. (6)

Here the matrix N(we) is the (NlNr) by (NlNS) block
diagonal matrix with M(we) repeated along its diagonal,
while the matrix N(wS) is the (NlNr) by Ne matrix obtained
by stacking the matrices M(wSj).

As with the rendering equations for individual image
locations, Eq. 6 expresses a bilinear relation. Any results
that hold for generally for bilinear rendering equations may
be applied to the specific problem of color constancy.

The Product Example
The simplest case of a bilinear inverse problem occurs

when the data and the scene parameters are all scalars. For
example, we can consider the rendering equation r = es + n,
where the random variable n represents additive Gaussian
noise. The estimation problem is to reason from r back to
estimates of e and s. This example shares with the color
constancy problem its bilinearity and the fact that it is
underdetermined.

Figure 2. The posterior distribution for the product example.

Suppose we know that e and s were each drawn from a
uniform distribution on the range [0,4]. Figure 2 shows the
bivariate posterior distribution on e and s when the observed
data r = l and when the added noise is Normally distributed
with mean 0 and variance 0.18. Over the plotted domain, the
posterior is given by

  

p(e,s|r = 1) = Cexp
1 − es[ ]2

2 0.42[ ]2












. (7)

The posterior makes perfect sense. Points (e,s) whose
product is close to l have a large posterior probability.
Points whose product is quite different from l have a low
posterior probability. The set of points with highest prob-
ability form a hyperbolic ridge along the locus of points
(e,s) such that es = l.

From a deterministic point of view, it is hopeless to try
to estimate e and s given r. There are many pairs of points
(e,s) that are consistent with the data, and the uniform prior
does not distinguish between them. Within the Bayesian
framework, however, some estimates are better than others.
Which estimate is best depends on the loss function. The left
column of Figure 3 shows four different loss functions. The
first is the quadratic loss function:

       Lq (ẽ, s̃; e,s) = (ẽ − e)2 + (s̃ − s)2 . (8)

This function produces a penalty that grows at an
accelerating rate with the size of the estimation error. The
second is a delta loss function:

       Ld (ẽ, s̃; e,s) = −δ (ẽ, s̃) − (e,s)( ). (9)

This loss function produces a constant penalty except
for when the estimate is exactly correct. Both of these loss
functions are commonly used. It is not clear, however, that
either actually describes the loss for many real estimation
problems. Often, coming fairly close to the true value is
satisfactory and the loss saturates once the estimation error
is sufficiently large. The third panel in the left column of
Figure 3 plots this sort of loss function. We call this the local
mass loss function since it integrates probability density
over a local area. It is given by

  
Llm (ẽ, s̃; e,s) = − exp

−1
2µ2 (ẽ − e)2 + (s̃ − s)2[ ]. (10)

The local mass loss function rewards estimates close to
the true value and provides for a saturating penalty for
squared errors much greater than µ2. Yuille and Bulthoff16

have independently noted the usefulness of this loss func-
tion for related problems.

The final panel of the top row shows an example of an
asymmetric loss function

  La (ẽ, s̃; e,s) = −δ (ẽ − e). (11)

This type loss function is appropriate in situations
where we are more interested in some of the scene param-
eters than in others. For example, we may be much more
interested in correctly estimating surface properties than in
estimating the illuminant or vice versa. In the figure, we
show an asymmetric version of the delta loss function. This
loss function is an extreme example in that no weight at all
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is placed on estimation error for one parameter. It is straight-
forward to construct asymmetric versions of the quadratic
or local mass loss functions where estimation error for
different parameters is not weighted equally.

The right column of Figure 3 shows the Bayes risk
corresponding to each loss function as a function of     ̂e  and
  ̂s .  The risks were computed using the posterior shown in
Figure 2. From top to bottom, the points of minimum risk
are (1.30,1.30), (-,-), (0.99,0.99), and (0.35,-), where the
symbol - denotes an indeterminate minimum.

Figure 3. Left column: Four loss functions for the product ex-
ample. From top to bottom, the quadratic, delta, local mass, and
asymmetric loss functions. Each of the loss functions is shift-
invariant and is plotted as a function of e and s with     ̃e  and     ̃s  held
constant. The constant 1 was added to the last three loss functions
for visual clarity. For the local mass function, µ = 0.2. Right
column: The Bayes risks corresponding to each loss function for
the posterior of Figure 2. For visual clarity, theses functions are
plotted with risk increasing towards the bottom of the page.

For two of the loss functions, there is a point of
minimum risk. Even for highly underdetermined prob-
lems, some solutions are better than others. Also note that
the minimum risk estimate depends on the loss function.
For example, by comparing the second and fourth rows
of the figure, we see that modifying the loss function to
ignore the estimation error for   ̂s  has a large effect on the
how the risk depends on   ̂e. The choice of loss function
has a substantive effect on the estimate obtained from the
posterior.

The computational cost of finding the minimum risk
estimate depends on the loss function. In general, it is
easier to minimize the Bayes risk when the risk can be
evaluated using calculations that are local in the param-
eter space. For the delta loss function, finding the risk
associated with any estimate   (ẽ, s̃)  only requires evaluat-
ing the posterior at the point   (ẽ, s̃) .  For the local mass
loss function, the calculation involves integration of a
function that is localized in the parameter space. For
some cases, the Bayes risk integral for both the asymmet-
ric and the local mass loss functions may be approxi-
mated, yielding a local analytic calculation. See
Freeman17,18 for examples using an asymmetric loss func-
tion. For the quadratic loss function, finding the risk
requires a global calculation in the parameter space. But
for this loss function, the point of minimum risk is equal
to the mean of the posterior distribution; it is not neces-
sary to search numerically for the point of minimum risk.

We can make a second general point with the scalar
product example: prior information helps. Suppose that
rather than choosing uniform priors we choose p(e) =
N(ue,σ2

e) and p(s) = N(uS, σ2
S), with p(e,s) = p(e)p(s). For

large variances σ2
e and σ2

S, the distribution of e and s over
the region [0,4] will be almost uniform. But as the variance
of even one of the variables shrinks, the prior information
will start to influence the posterior. The effect of changing
the prior variance may be quantified calculating the Bayes
risk as a function of the prior variances. Figure 4 shows plots
the results of such a calculation. Smaller prior variances
result in lower Bayes risks.

Figure 4. Effect of prior variance. The plot shows how the Bayes risk
varies with the prior variance for the product example. The x-axis
shows the prior vanance σ2

e. The y-axis shows the risk corresponding
to the minimum risk estimate. The risks were computed with the local
mass function, r = 1, ue = us = 2, and σ2

s >> 2.
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Bayesian Color Constancy

We now develop a Bayesian approach to inverting the color
constancy rendering equation. Our solution applies to any
bilinear inverse problem with multivariate Normal priors
where the two (e.g. illuminant and surface) sets of param-
eters are drawn independently.

Priors
We assume that the illuminant prior is determined by a

multivariate Normal distribution on the weights of a linear
model, so that e = Be we and

p(we) = N(ue,Ke). (12)

Similarly, the prior for each surface is determined by a
multivariate Normal distribution on the weights of a linear
model, so that sj = BSwS and

p(wsj) = N(usj,Ksj). (13)

We assume that the surfaces at each location are inde-
pendent and identically distributed, so that we may write

p(wS) = N(uS , KS) (14)

where uS is obtained by stacking Nl copies of usj and KS is
the (NlNS) by (NlNS) block diagonal matrix with Ksj along
the diagonal. Assuming that the illuminant and the surfaces
are statistically independent, we have

p(we,wS) = p(we) p(wS). (15)

Data Formation
From the rendering equation (Eq. 6) we know the

relation between r, we and wS. We assume that the vector of
sensor responses is perturbed by additive Gaussian noise
with mean vector un and covariance matrix Kn. We will
study the case where the noise for each sensor is indepen-
dent and identically distributed with zero mean, so that un =
0 and Kn is a multiple of the identity matrix. We can write

p(r | we,wS) = N(A(we) wS + un, Kn)
            = N(A(wS) we + un, Kn). (16)

The Posterior
From Bayes’ Rule, we can compute the posterior dis-

tribution for the illuminants and surfaces, given the data.

p(we,wS | r) = C p(r | we,wS) p(we)p(wS). (17)

The posterior captures our knowledge about the scene
parameter given the sensor responses and the priors.

Choosing a Point Estimate
In general, minimizing the Bayes Risk requires mini-

mizing the expected value of a loss function for different
choices of estimates. Because the dimensionality of wS

grows with the number of image locations, it can be quite
high. Thus computing the expectation of the loss function
for any given parameter estimate and searching for the
parameter estimates that minimize this expected loss is

computationally very intensive. Here we report on an ana-
lytic method for computing the marginal posterior distribu-
tion p(we | r). Because the dimensionality of we is reduced
from that of the full problem, numerical methods may be
used to find point estimates from the marginal. For the
quadratic loss function, the minimum risk estimate for we is
given by the mean of the marginal distribution p(we | r). This
estimate for we is the same as would be obtained by finding
the minimum quadratic risk estimate (we,wS) from the full
posterior p(we, wS | r). As the scalar product example
illustrates, these properties do not generalize to other loss
functions.

Marginal Distributions
To compute the marginal distribution on illuminants,

we integrate the joint posterior distribution (Eq. 17) over the
variable s.

      

p(we|r) = p(we , ws|r)ds
s∫

= C p(we ) p(r|we , ws )p(ws )ds
s∫

= C exp -
1
2

Kwe
−1/ 2 (we ,ue )

2





×

exp -
1
2

Kn
−1/ 2 (r − A(we )s - un )

2



s∫ ×

exp -
1
2

Kws
−1/ 2 (s - us )

2




ds

(18)

where the constant C is independent of we and ws. Let sls

denote the least squares solution to the set of linear equa-
tions r = A(we)s. Then we may write

    

Kn
−1/ 2 (r − A(we )s - un ) =

= Kn
−1/ 2 (r − A(we )sls )

2
+

+ Kn
−1/ 2 (A(we )s - sls )

2

(19)

where we used the facts that (r - A(we)sls)⊥(A(we)(s - sls)) for
a least squares solution sls, that Kn is a multiple of the identity
matrix, and that un = 0. We use Eq. 19 to rewrite Eq. 18.

      

p(we|r) = C exp -
1
2

Ke
−1/ 2 (we - ue )

2





×

exp − 1
2

Kn
−1/ 2 (r − A(we )sls )

2





×

exp − 1
2

Kn
−1/ 2 (A(we )(s - sls ))

2





×
s∫

exp − 1
2

Ks
−1/ 2 (s - us )

2




ds.

(20)

We can solve the above integral analytically if we
employ a matrix version of “completing the square”. Let Kl

= [A(we)TKn
-1A(we)]-1, K2 = KS, u1 = sls, and u2 = uS. We can

rewrite the integral in Eq. 20 and simplify
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exp -
1
2

Kn
−1/ 2 (A(we )(s - sls )

2



s∫ ×

exp -
1
2

Kws
−1/ 2 (s - uws )

2




ds

= exp -
1
2

K1
−1/ 2 (s - u1)

2



s∫ ×

exp -
1
2

K2
−1/ 2 (s - us )

2




ds

= exp
1
2

CK






exp -
1
2

K -1/ 2 (s - u)
2



s∫ ds

(21)

where 
    
K1 = K1

−1 + K2
−1, K1 = A(we )T Kn

−1A(we )[ ]−1
, and

    

CK = u1
TK1

−1KK2
−1u2 − u1

TK1
−1 KK2

−1u1 +

u2
TK2

−1KK1
−1u1 − u2

TK2
−1 KK1

−1u2

. (22)

The equivalence of the integrals in Eq. 21 may be
verified by direct algebraic expansion. The last integral in
Eq. 21 may be evaluated analytically, and we use this to
derive for the marginal posterior on we

    

p(we|r) = C exp − 1
2

Kwe
−1/ 2 (we ,ue )

2





×

exp − 1
2

Kn
−1/ 2 (r − A(we )sls )

2





×

exp − 1
2

CK






×

1

K−1

(23)

where we have absorbed some additional constants into C.
Note that we have achieved significant computational sav-
ings by this analytic integration. We have summed the
posterior density over the surface parameters at all loca-
tions, leaving a lower dimensional marginal density over
the illuminant parameters.

Simulations

To evaluate the potential of the Bayesian approach, we
performed simulations. We computed the sensor data cor-
responding to simulated scenes and used a Bayesian algo-
rithm to estimate the illuminant from the data. We compared
the performance of this algorithm with that of the subspace
and gray world algorithms.

Methods
To perform the simulations, we created three dimen-

sional linear models for surfaces and illuminants. We choose
a linear model for surfaces by performing principal compo-
nents analysis on the data of Kelly et al.,19,20 who measured
the reflectance functions of 462 Munsell papers. We then

found the best fitting model weights for each individual
surface in the data set. The distribution of these weights is
shown in Figure 1 above. We used the weight means as the
entries the prior mean usj. We formed Ksj as the diagonal
matrix whose diagonal entries were the three weight vari-
ances. We also investigated prior distributions where the
standard deviation of the third basis component was set to
0.1 or 0.5 of its full value.

Large sets of measured illuminants are not readily
available. Summaries of such data sets, in the form of linear
models, do exist. We took our three dimensional linear
model for illuminants to be the CIE linear model for
daylights.21 To generate a prior distribution on the weights
of this linear model, we generated a set of randomly drawn
CIE daylights with correlated color temperatures drawn
according to a Normal distribution with mean 6500° K and
standard deviation 4000° K. (Any draws outside the range
3000° to 25000° K were rejected.) We then perturbed the
intensities of these illuminants by scale factors drawn
uniformly between 1 and 10. Using our data set, we com-
puted the linear model weights on each function and formed
ue and Ke as the mean and covariance of these weights.

We simulated scenes consisting of 8 randomly drawn
surfaces under a single randomly drawn illuminant. In
drawing surfaces and illuminants, we enforced physical
realizability constraints. Any surface whose reflectance
was negative or exceeded unity at any wavelength was
rejected, while any illuminant with negative power at any
wavelength was rejected. We used the rendering equation
and the Smith-Pokorny estimates of the human cone sensi-
tivities22 to compute the cone responses. We perturbed the
cone responses by additive Gaussian noise with mean zero
and standard deviations of either 0.01 or 0.1 times the cone
responses of the mean surface under the mean illuminant.

We compared three estimation methods. For the
Bayesian algorithm we used Eq. 23 to evaluate the
marginal posterior on the illuminant. We then used Monte
Carlo methods to estimate the mean of this posterior
distribution.23 This procedure is equivalent to minimiz-
ing the Bayes risk with respect to a quadratic loss func-
tion. In computing the posterior mean, we added a physical
realizability constraint on the posterior. We set the pos-
terior for any illuminant with negative power at any
wavelength to zero.

For comparison, we also estimated the illuminant using
the subspace and gray world algorithms. Our implementa-
tion of the subspace method algorithm follows Wandell.9

(We have not investigated a recent suggestion by Marimont
and Wandell24 that might lead to improved performance
from this algorithm.) Our implementation of the  gray world
algorithm follows Buchsbaum.10

The algorithm of Maloney and Wandell is only de-
signed to recover the relative spectrum of the illuminant. In
some of our comparisons, therefore, we scale each esti-
mated illuminant to provide the best fit to the true simulated
illuminant. This scaling allows us to evaluate how well the
algorithms estimate relative spectra.

As a summary measure of performance, we use the
fractional squared estimation error

  
ε =

e − ê
2

e 2 . (24)
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Figure 5. Fixed illuminant simulation. The solid line in each panel
shows the spectral power distribution of the simulated illuminant.
The dashed lines show the upper and lower envelopes of 10
illuminant estimates. The mean error for the 10 estimates is given
in the upper right of each panel. Simulation details: full surface
linear model, sensor noise 0.01, results scaled to provide best fit
to simulated illuminant.

Results
Figure 5 illustrates the performance of the three algo-

rithms for a fixed illuminant. Each panel of the figure

illustrates performance for one of the three algorithms. To
generate each panel of the figure, we fixed the simulated
illuminant and repeated the simulation for 10 different sets
of 8 randomly drawn surfaces. The solid line in each panel
shows the simulated illuminant. The dashed lines show the
upper and lower envelopes of 10 estimates generated by
each algorithm. To generate this figure, each estimated
illuminant was scaled in intensity to provide the best fit to
the true illuminant.

The subspace algorithm does very poorly for these
conditions. This is because the assumptions on which it is
based are violated for our simulations. The gray world
algorithm does better, capturing the approximate shape of
the illuminant. The Bayesian algorithm does the best of all.
The fractional error for the Bayesian algorithm is roughly
half that of the gray world algorithm.

To get a sense of the conditions under which the
algorithms performed well or poorly, we conducted further
simulations. In each of these, we simulated performance for
100 draws of a simulated illuminant and a collection of
simulated surfaces. For each set of 100 draws, we summa-
rized the performance of each algorithm by the mean
fractional error. Again, we scaled each estimated illuminant
to the simulated illuminant before computing the error. We
performed this set of simulations for a number of different
choices of surface prior and level of added sensor noise. The
surface priors varied according to the standard deviation of
the weight of the third basis function as described above.
Figure 6 summarizes the results. Each panel of the figure
shows the meanestimation error of one of the algorithms for
six combinations of third basis weight standard deviation
and levels of added noise. To help understand the error
measure, we note that for our illuminant prior, simply
estimating the relative illuminant spectrum as the prior
mean, without examining the sensor data, leads to a mean
fractional error of roughly 0.20.

Again we see that the Bayesian algorithm performs
best for all conditions. When the standard deviations of the
third basis component and the added noise are small, the
subspace algorithm also performs well, as expected. The
rapid loss in performance as either of these standard devia-
tions is increased is indicative of the robustness problems
encountered with this algorithm. The gray world algorithm
is robust, but never performs as well as the Bayesian
algorithm.

Figure 7 illustrates the effect of scaling on the esti-
mates. Both the Bayesian and the gray world algorithms are
designed to recover not only the relative spectrum of the
illuminant but also the absolute spectrum. In Figure 7 we plot,
in the same manner as in Figure 5, the unscaled illuminant
estimates for these two algorithms. Performance degrades
relative to that shown in Figure 5, but for the Bayesian
algorithm the mean error is at the respectable level of 0.10

Discussion

The Bayesian Framework
It should not be too surprising that the Bayesian algo-

rithm outperforms the subspace and gray world algorithms.
The Bayesian algorithm is constructed to minimize the
expected error. As we noted above, there are two reasons we
can expect it to do better. First, it takes advantage of all of



352—Recent Progress in Color Processing

the information in the sensor data; it is not restricted to use
only the information available in a particular summary
statistic. Second, our assumption that illuminants and sur-
faces follow a Normal distribution is an added assumption
not incorporated into the other two algorithms. Since this
assumption held true for our simulation conditions, its
incorporation was advantageous..

Figure 6. Multiple illuminant simulations. The mean error for
each algorithm is plotted for six simulation conditions. The
conditions vary in the size of the standard deviation of the third
basis component and in the bvel of added noise

Figure 7. Fixed illuminant simulations. The solid line in each
panel shows the spectral power distribution of the simulated
illuminant. The dashed lines show the upper and lower envelopes
of 10 illuminant estimates. The mean error for the 10 estimates is
given in the upper right of each panel. Simulation details: full
surface linear model, sensor noise 0.01, no scaling of results.

The distribution of weights shown in Figure 1 strongly
suggests that it is reasonable to make some type of assump-
tion about the distribution of linear model weights. One
reason to expect the weights to cluster is that surfaces and
illuminants are subject to physical realizability constraints.
Illuminants may not have negative power. Surface
reflectances must lie between zero and unity. Forsyth25

argued that combining linear model and physical realizabil-
ity constraints leads to improved color constancy algo-
rithms. D’Zmura and Iverson15 have recently reached similar
conclusions by using a Bayesian approach to combine the
two types of constraints. Our use of a Normal prior distribu-
tion captures the type of weight clustering that as is imposed
by physical realizability constraints, a point also made by
Trussell and Vrhel.13

The Normal distribution also captures a second feature
of the weight distributions shown in Figure 1, a feature that
is not captured by a physical realizability constraint: the
variance on the weights of the three basis functions is not
uniform. There is no reason in principle that physical
realizability constraints cannot be added to our description
of the weight priors. The difficulty is computational. The
simplification provided by Eq. 23 does not apply for non-
Normal distributions.



Chapter II—Color Constancy—353

Other Approaches to Computational Color Constancy
Rather than seeking to invert the rendering model de-

scribed by Eqs. 1-5, other authors have considered more
complex viewing models. These authors conclude that addi-
tional information about the illuminant may be gained by
considering interreflection between surfaces,26 specular
highlights,27,28 and variation in the illumination.29,30 Our
approach complements this work in that we examine how
better performance may be achieved for a simple viewing
geometry. We expect that insight gained from our work could
be extended to the more complex viewing geometries.

Future Directions
There are three keys to successfully using a Bayesian

approach. The first is to formulate priors appropriate to the
problem at hand. We view our use of the Normal prior as
only a first step towards doing this. In the absence of
additional data about the distribution of natural surfaces and
illuminants, one can investigate how robust Bayesian algo-
rithms are with respect to misspecification of the prior
distribution. Second, as illustrated by the product example,
the choice of loss function can be critical. We do not believe
that either the quadratic nor the delta loss functions are the
best choice for perception problems. The local mass loss
function may be better. A related question of particular
interest is how strongly estimates of illuminant and surface
spectra vary with asymmetries in the loss function. This is
intriguing in part because the question of whether human
performance exhibits such variation could be investigated
psychophysically. Finally, the use of Bayesian methods
depends on finding computationally efficient methods for
minimizing the Bayes risk.
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